Testing a Hypothesis (Significance Tests)

Carry out measurements on an accurately known standard.

Experimental value is different from the true value.

Is the difference due to a systematic error (bias) in the method - or simply to random error?

Assume that there is *no* bias (**NULL HYPOTHESIS**), and calculate the probability that the experimental error is due to random errors.

Figure shows (A) the curve for the true value $(\mu_A = \mu_t)$ and (B) the experimental curve (μ_B)

 $\mathbf{Bias} = \mathbf{\mu}_{\mathbf{B}} \mathbf{\cdot} \mathbf{\mu}_{\mathbf{A}} = \mathbf{\mu}_{\mathbf{B}} \mathbf{\cdot} \mathbf{x}_{t} \mathbf{\cdot}$

Test for bias by comparing $\overline{x} - x_t$ with the difference caused by random error

Remember confidence limit for $\boldsymbol{\mu}$ (assumed to be $\boldsymbol{x}_t,$ i.e. assume no bias) is given by:

CL for
$$\mu = \overline{x} \pm \frac{ts}{\sqrt{N}}$$

: at desired confidence level, random errors can lead to:

$$\overline{x} - x_t = \pm \frac{ts}{\sqrt{N}}$$

 \therefore if $\overline{x} - x_t > \left| \frac{ts}{\sqrt{N}} \right|$, then at the desired

confidence level bias (systematic error) is likely (and vice versa).

Detection of Systematic Error (Bias)

A standard material known to contain 38.9% Hg was analysed by atomic absorption spectroscopy. The results were 38.9%, 37.4% and 37.1%. At the 95% confidence level, is there any evidence for a systematic error in the method?

$$\overline{x} = 378\% \qquad \therefore \overline{x} - x_i = -1.1\%$$

$$\sum x_i = 113.4 \qquad \sum x_i^2 = 4208.30$$

$$\therefore s = \sqrt{\frac{4208.30 - (113.4)^2/3}{2}} = 0.943\%$$

Assume null hypothesis (no bias). Only reject this if

$$t_{calc} = (\overline{x} - \mu) \frac{\sqrt{N}}{s}$$
 Reject if $t_{calc} > t_{table}$

But t (from Table) = 4.30, s (calc. above) =
$$0.943\%$$
 and N = 3

2.02 < 4.30

Therefore the null hypothesis is maintained, and there is no evidence for systematic error at the 95% confidence level.

Are two sets of measurements significantly different?

Suppose two samples are analysed under identical conditions. Sample $1 \rightarrow \overline{x_1}$ from N_1 replicate analyses Sample $2 \rightarrow \overline{x_2}$ from N_2 replicate analyses

Are these significantly different? Using definition of pooled standard deviation, the equation on the last overhead can be re-arranged: $\overline{x} = \overline{x}$

$$t_{calc} = \frac{x_1 - x_2}{s_{pooled} \sqrt{\frac{N_1 + N_2}{N_1 N_2}}}$$

Again reject if $t_{calc} > t_{table}$

1

Detection of Gross Errors

A set of results may contain an outlying result - out of line with the others. Should it be retained or rejected? There is no universal criterion for deciding this. One rule that can give guidance is the *Q* test.

The parameter Q_{calc} is defined as follows:

$$Q_{calc} = \frac{outlier - nearest _ neighbor}{total _ spread}$$

Again reject if
$$Q_{calc} > Q_{table}$$

No. of observations	90%	95%	99% confidencelevel
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

Rejection of outlier recommended if $Q_{calc} > Q_{table}$ for the desired confidence level.

Note:1. The higher the confidence level, the less likely is rejection to be recommended.

2. Rejection of outliers can have a marked effect on mean and standard deviation, esp. when there are only a few data points. *Always try to obtain more data*.

Q Test for Rejection of Outliers

The following values were obtained for the concentration of nitrite ions in a sample of river water: 0.403, 0.410, 0.401, 0.380 mg/l. Should the last reading be rejected?

 $Q_{calc} = |0.380 - 0.401| / (0.410 - 0.380) = 0.7$

But $Q_{table} = 0.829$ (at 95% level) for 4 values

Therefore, $Q_{calc} < Q_{table}$, and we cannot reject the suspect value. Suppose 3 further measurements taken, giving total values of: 0.403, 0.410, 0.401, 0.380, 0.400, 0.413, 0.411 mg/l. Should 0.380 still be retained?

 $\begin{aligned} \mathcal{Q}_{calc} &= \left| 0.380 - 0.400 \right| / (0.413 - 0.380) = 0.606 \\ \text{But } \text{Q}_{table} = 0.568 \text{ (at 95\% level) for 7 values} \\ \text{Therefore, } \text{Q}_{calc} > \text{Q}_{table}, \text{ and rejection of } 0.380 \text{ is recommended.} \end{aligned}$

But note that 5 times in 100 it will be wrong to reject this suspect value! Also note that if 0.380 is retained, s = 0.011 mg/l, but if it is rejected, s = 0.0056 mg/l, i.e. precision appears to be twice as good, just by rejecting one value.